Resumen del fenómeno MAC y la red intracorporal de nanocomunicaciones

Fuente: https://web.archive.org/web/20220515200541/https://corona2inspect.net/2022/05/08/resumen-del-fenomeno-mac-y-la-red-intracorporal-de-nanocomunicaciones/

Fecha de publicación: 08 Mayo 2022
Estado: Sitio web eliminado. Recuperado desde WayBack Machine

El fenómeno de las emisiones MAC en personas vacunadas contra la COVID-19, resulta un hecho alarmante, que demuestra una relación de causa y efecto. En este vídeo-documental, se resume cómo fue advertido el fenómeno MAC, en qué consiste, cómo se puede experimentar de forma sencilla, qué implicaciones tiene para el individuo y para la sociedad, qué es lo que podría estar causando el fenómeno MAC observado, lo que nos indica la literatura científica sobre redes intracorporales de nanocomunicaciones inalámbricas, el cometido de los protocolos MAC en la red, y su planteamiento a nivel teórico. En este documental, también se ha dedicado un apartado a la especulación en el que se intenta imaginar posibles usos, en base a las posibilidades que enuncia la literatura científica y en base al contenido confirmado y desvelado en las vacunas, el grafeno y derivados.

Después de ver este documental, quizás desea realizar algunas pruebas o experimentos de detección de direcciones MAC anónimas y considere usar, además de las funciones Bluetooth predeterminadas de su teléfono, otras aplicaciones de respaldo. A continuación se muestra una relación de aplicaciones para teléfonos con sistema operativo IOS y Android, que podrían resultar útiles para detectar e indagar en relación a las direcciones MAC de personas vacunadas.

Aplicaciones IOS

Aplicaciones Android


Es probable que, una vez haya registrado una relación de direcciones MAC que potencialmente correspondan a personas vacunadas, desee comprobar si pertenecen a algún fabricante de dispositivos electrónicos. A continuación se facilitan distintos recursos donde comprobar el fabricante de cada dispositivo MAC.

Buscadores de OUI MAC

Bibliografía citada en el documental

  1. Abbasi, E.; Akbarzadeh, A.; Kouhi, M.; Milani, M. (2016). Graphene: synthesis, bio-applications, and properties. Artificial cells, nanomedicine, and biotechnology44(1), pp. 150-156. https://doi.org/10.3109/21691401.2014.927880
  2. Abbasi, Q.H.; El-Sallabi, H.; Chopra, N.; Yang, K.; Qaraqe, K.A.; Alomainy, A. (2016). Terahertz channel characterization inside the human skin for nano-scale body-centric networks. IEEE Transactions on Terahertz Science and Technology6(3), pp. 427-434. https://doi.org/10.1109/TTHZ.2016.2542213
  3. Abbasi, Q.H.; Nasir, A.A.; Yang, K.; Qaraqe, K.A.; Alomainy, A. (2017). Cooperative in-vivo nano-network communication at terahertz frequencies. IEEE Access5, pp. 8642-8647. https://doi.org/10.1109/ACCESS.2017.2677498
  4. Abd-El-atty, S.M.; Lizos, K.A.; Gharsseldien, Z.M.; Tolba, A.; Makhadmeh, Z.A. (2018). Engineering molecular communications integrated with carbon nanotubes in neural sensor nanonetworks. IET Nanobiotechnology12(2), pp. 201-210. https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-nbt.2016.0150
  5. Akyildiz, I.F.; Jornet, J.M.; Pierobon, M. (2010). Propagation models for nanocommunication networks. En: Proceedings of the Fourth European Conference on Antennas and Propagation (pp. 1-5). IEEE. https://ieeexplore.ieee.org/abstract/document/5505714
  6. Aliouat, L.; Rahmani, M.; Mabed, H.; Bourgeois, J. (2021). Enhancement and performance analysis of channel access mechanisms in terahertz band. Nano Communication Networks29, 100364. https://doi.org/10.1016/j.nancom.2021.100364
  7. Alsheikh, R.; Akkari, N.; Fadel, E. (2016). MAC protocols for wireless nano-sensor networks: Performance analysis and design guidelines. En: 2016 Sixth International Conference on Digital Information Processing and Communications (ICDIPC) (pp. 129-134). IEEE. https://doi.org/10.1109/ICDIPC.2016.7470805
  8. Balghusoon, A.O.; Mahfoudh, S. (2020). Routing protocols for wireless nanosensor networks and internet of nano things: a comprehensive survey. IEEE Access8, pp. 200724-200748. https://doi.org/10.1109/ACCESS.2020.3035646
  9. Bareket-Keren, L.; Hanein, Y. (2013). Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects. Frontiers in neural circuits6, 122. https://doi.org/10.3389/fncir.2012.00122
  10. Betzalel, N.; Ishai, P.B.; Feldman, Y. (2018). The human skin as a sub-THz receiver–Does 5G pose a danger to it or not?. Environmental research163, pp. 208-216. https://doi.org/10.1016/j.envres.2018.01.032
  11. Bouchedjera, I.A.; Louail, L.; Aliouat, Z.; Harous, S. (2020). DCCORONA: Distributed Cluster-based Coordinate and Routing System for Nanonetworks. En: 2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON) (pp. 0939-0945). IEEE. https://doi.org/10.1109/UEMCON51285.2020.9298084
  12. Gabay, T.; Jakobs, E.; Ben-Jacob, E.; Hanein, Y. (2005). Engineered self-organization of neural networks using carbon nanotube clusters. Physica A: Statistical Mechanics and its Applications350(2-4), pp. 611-621. https://doi.org/10.1016/j.physa.2004.11.007
  13. Ghafoor, S.; Boujnah, N.; Rehmani, M.H.; Davy, A. (2020). MAC protocols for terahertz communication: A comprehensive survey. IEEE Communications Surveys & Tutorials22(4), pp. 2236-2282. https://doi.org/10.1109/COMST.2020.3017393
  14. Han, M.; Karatum, O.; Nizamoglu, S. (2022). Optoelectronic Neural Interfaces Based on Quantum Dots. ACS Applied Materials & Interfaceshttps://doi.org/10.1021/acsami.1c25009
  15. Hejazi, M.; Tong, W.; Ibbotson, M.R.; Prawer, S.; Garrett, D.J. (2021). Advances in carbon-based microfiber electrodes for neural interfacing. Frontiers in Neuroscience15, 403. https://doi.org/10.3389/fnins.2021.658703
  16. Hossain, Z.; Vedant, S.H.; Nicoletti, C.R.; Federici, J.F. (2016). Multi-user interference modeling and experimental characterization for pulse-based terahertz communication. En: Proceedings of the 3rd ACM International Conference on Nanoscale Computing and Communication (pp. 1-6). https://doi.org/10.1145/2967446.2967462
  17. Hosseininejad, S.E.; Abadal, S.; Neshat, M.; Faraji-Dana, R.; Lemme, M.C.; Suessmeier, C.; Cabellos-Aparicio, A. (2018). MAC-oriented programmable terahertz PHY via graphene-based Yagi-Uda antennas. En: 2018 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 1-6). IEEE. https://doi.org/10.1109/WCNC.2018.8377201
  18. Kulakowski, P.; Turbic, K.; Correia, L.M. (2020). From nano-communications to body area networks: A perspective on truly personal communications. IEEE Access8, pp. 159839-159853. https://doi.org/10.1109/ACCESS.2020.3015825
  19. Le, T.N.; Pegatoquet, A.; Magno, M. (2015). Asynchronous on demand MAC protocol using wake-up radio in wireless body area network. En: 2015 6th International Workshop on Advances in Sensors and Interfaces (IWASI) (pp. 228-233). IEEE. https://doi.org/10.1109/IWASI.2015.7184942
  20. Lemic, F.; Abadal, S.; Tavernier, W.; Stroobant, P.; Colle, D.; Alarcón, E.; Famaey, J. (2021). Survey on terahertz nanocommunication and networking: A top-down perspective. IEEE Journal on Selected Areas in Communications39(6), pp. 1506-1543. https://doi.org/10.1109/JSAC.2021.3071837
  21. Lovat, V.; Pantarotto, D.; Lagostena, L.; Cacciari, B.; Grandolfo, M.; Righi, M.; Ballerini, L. (2005). Carbon nanotube substrates boost neuronal electrical signaling. Nano letters5(6), pp. 1107-1110. https://doi.org/10.1021/nl050637m
  22. Martinelli, V.; Cellot, G.; Fabbro, A.; Bosi, S.; Mestroni, L.; Ballerini, L. (2013). Improving cardiac myocytes performance by carbon nanotubes platforms. Frontiers in physiology4, 239. https://doi.org/10.3389/fphys.2013.00239
  23. Medlej, A.; Dedu, E.; Dhoutaut, D.; Beydoun, K. (2022). Efficient Retransmission Algorithm for Ensuring Packet Delivery to Sleeping Destination Node. En: International Conference on Advanced Information Networking and Applications (pp. 219-230). Springer, Cham. https://doi.org/10.1007/978-3-030-99587-4_19
  24. Ménard-Moyon, C. (2018). Applications of carbon nanotubes in the biomedical field. En: Smart nanoparticles for biomedicine (pp. 83-101). Elsevier. https://doi.org/10.1016/B978-0-12-814156-4.00006-9
  25. Mezher, M.A.; Din, S.; Ilyas, M.; Bayat, O.; Abbasi, Q.H.; Ashraf, I. (2022). Data Transmission Enhancement Using Optimal Coding Technique Over In Vivo Channel for Interbody Communication. Big Datahttps://doi.org/10.1089/big.2021.0224
  26. Nussenbaum, K.; Cohen, A.O. (2018). Equation Invasion! How Math can Explain How the Brain Learns. http://doi.org/10.3389/frym.2018.00065
  27. Pan, K.; Leng, T.; Song, J.; Ji, C.; Zhang, J.; Li, J.; Hu, Z. (2020). Controlled reduction of graphene oxide laminate and its applications for ultra-wideband microwave absorption. Carbon160, pp. 307-316. https://doi.org/10.1016/j.carbon.2019.12.062
  28. Piro, G.; Bia, P.; Boggia, G.; Caratelli, D.; Grieco, L.A.; Mescia, L. (2016). Terahertz electromagnetic field propagation in human tissues: A study on communication capabilities. Nano Communication Networks10, pp. 51-59. https://doi.org/10.1016/j.nancom.2016.07.010
  29. Rauti, R.; Musto, M.; Bosi, S.; Prato, M.; Ballerini, L. (2019). Properties and behavior of carbon nanomaterials when interfacing neuronal cells: How far have we come?. Carbon143, pp. 430-446. https://doi.org/10.1016/j.carbon.2018.11.026
  30. Rikhtegar, N.; Keshtgari, M.; Ronaghi, Z. (2017). EEWNSN: Energy efficient wireless nano sensor network MAC protocol for communications in the terahertz band. Wireless Personal Communications97(1), pp. 521-537. https://doi.org/10.1007/s11277-017-4517-4
  31. Sarlange, G.; Devilleger, J.; Trillaud, P.; Fouchet, S.; Taillasson, L.; Catteu, G. (2021). Projet Bluetooth Expérience X. https://ln5.sync.com/dl/195df4a10/5ab9apq6-q5vgawam-vgr3ktt9-7zr985rh
  32. Sivapriya, S.; Sridharan, D. (2017). Energy Efficient MAC Protocol for Body Centric Nano-Networks (BANNET). ADVANCED COMPUTING (ICoAC 2017), 422.
  33. Vavouris, A.K.; Dervisi, F.D.; Papanikolaou, V.K.; Karagiannidis, G.K. (2018). An energy efficient modulation scheme for body-centric nano-communications in the THz band. En: 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST) (pp. 1-4). IEEE. https://doi.org/10.1109/MOCAST.2018.8376563
  34. Yang, K.; Bi, D.; Deng, Y.; Zhang, R.; Rahman, M.M.U.; Ali, N.A.; Alomainy, A. (2020). A comprehensive survey on hybrid communication in context of molecular communication and terahertz communication for body-centric nanonetworks. IEEE Transactions on Molecular, Biological and Multi-Scale Communications6(2), pp. 107-133. https://doi.org/10.1109/TMBMC.2020.3017146
  35. Yin, P.; Liu, Y.; Xiao, L.; Zhang, C. (2021). Advanced Metallic and Polymeric Coatings for Neural Interfacing: Structures, Properties and Tissue Responses. Polymers13(16), 2834. https://doi.org/10.3390/polym13162834
  36. Yuan, C.; Tony, A.; Yin, R.; Wang, K.; Zhang, W. (2021). Tactile and thermal sensors built from carbon–polymer nanocomposites—A critical review. Sensors21(4), 1234. https://doi.org/10.3390/s21041234
  37. Zhang, R.; Yang, K.; Abbasi, Q.H.; Qaraqe, K.A.; Alomainy, A. (2017). Analytical characterisation of the terahertz in-vivo nano-network in the presence of interference based on TS-OOK communication scheme. IEEE Access5, pp. 10172-10181. https://doi.org/10.1109/ACCESS.2017.2713459
  38. Zhang, Y.; Yang, C.; Yang, D.; Shao, Z.; Hu, Y.; Chen, J.; Wang, L. (2018). Reduction of graphene oxide quantum dots to enhance the yield of reactive oxygen species for photodynamic therapy. Physical Chemistry Chemical Physics20(25), pp. 17262-17267. https://doi.org/10.1039/C8CP01990H